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Abstract—In this paper, plane elastic contact between a thin strip and symmetric rollers is
considered. Various loading regimes. including frictional sliding, frictionless and frictional inden-
tation, and the effect of applying a tangential force less than that necessary to cause sliding are
treated. For each case, the surface tractions are found, and. for the last two problems, a detailed
analysis of the stick and slip zones is presented.

INTRODUCTION

The motivation for the present analysis was a desire to assess the degree of approximation
implicit in representing the strip used in fretting fatigue tests as a half-plane. A schematic
view of the geometry is shown in Fig. 1(a). Previous analyses had treated the contact as
Hertzian, i.c. it had been assumed that the thickness of the strip was much greater than the
contact semi-width, so that cach body could be approximated by a half-plane[t, 2]. It
transpires that for practical cases, where this ratio is typically 10, the idealization is cntircly
justified, but a wide varicty of other cases with the same general layout, and where the
assumption of Hertzian contact is certainly inappropriate, have also been examined.

Elastic contact problems involving strips can, in principle, be formulated using Sned-
don’s integral transform methods[3]. However, in practice two problems arise; first, the
integrals developed are often difficult to evaluate accurately, since they are over a semi-
infinite range and incorporate slowly decaying oscillatory kernels. Secondly, mixed boun-
dary value problems cannot readily be formulated. Instead, a hybrid method duc to Bentall
and Johnson{4] is adopted.

Whereas in half-plane problems an integral equation relating the surface displacements
to a continuously varying traction distribution can easily be composed(5], for strip problems
this is not feasible, owing to the complexity of the influence function. Instcad, a piccewise
lincar idealization of the true traction is utilized, which consists of a serics of overlapping
triangles (Fig. 2). The first step in the solution is to determine the surface displacements at
some point m due to a triangle of traction (direct or shear) centred on a point 7. When this
building block has been established, a wide variety of contact geometries may be analysed
by formulating what is, essentially, a discretized form of the integral equation method.
Details of the derivation of these influence functions are given by Bentall and Johnson[4]
and here, after summarizing the results needed, we concentrate on the solution of the
boundary value problems.

INFLUENCE FUNCTIONS

The problem outlined above where two cylinders indent a strip as shown in Fig. 1(a)
has the following surface boundary conditions outside the contact :

a)’)’=tx,v=0 |xl>a, y=+b (1)
where a is the contact semi-width and b the strip semi-thickness. We may use arguments of

symmetry about y = 0 to augment eqn (1), giving the following :
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Fig. 1. Contact configurations.

G,=1,=0 Y| >a y=h ()
Ty =(=0 )':0 (3)

whereupon the problem is seen to be identical to that of an clastic strip of thickness 5 resting
on a rigid frictionless substrate as shown in Fig. 1(b).

In gencral. coupling between shear and direct tractions may led to an asymmetric
distribution of direct traction. This would result in the centre of contact not being coinci-
dent with the centre of the indenter. Accordingly we take the origin as the centre of the
contact and assume the centre of the indenter to be displaced by an amount e. To reduce
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Fig. 2. Discretized model of surface tractions,

the number of independent variables we consider here contact between a cylinder and an
clastic strip having the same elastic constants, namely Poisson’s ratio v and modulus of
rigidity g. The problem is formulated below for conditions of plane strain.

Dircct and shear tractions over the contact are cach represented by 28 overlapping
triangles with equal bases (Fig. 2). The heights of the ath triangles are p, and ¢,. which
represent the magnitudes of the direct and shear tractions, respectively, at x = na/S. We
now write down the relative vertical and horizontal displacements v(sn). u(m) due to the
total dircet and shear foree exerted (4]

r{m) ) B | 1
a z“ }; “!’n[:z"‘:1,4114'[4(”"‘“”)} 26‘ Lip(m—n) =1 p(m)} + S[m('"—")]
s B l i_
'“ ; MQ"!::E Lylm—u)—~ S.S l Imr(”)} {4
"(':l”) = Y P,,[ Hp(m—ny+ Ly(n)} ]
" - )

1
— Z Qn[ [1)(”1 n)—[D(n)}— 3;{14;((”1*”)-[.4”(”)}] (5)

where P, = p,/p, @, = q,/p, p = P/2S. B = b/u and functions [ are precisely as defined by
Bentall and Johnson, q.v., and tabulated for convenience in the Appendix,

Following Hertz, the relative vertical displacement within the contact zone is approxi-
mated by a parabola. An allowance is made for the eccentricity e, so that

v(m) QQRA: . dmEAT  wmtA? .
¢«  a S ST (6)

where £ = ¢/u. D = d/a (d being the rigid body normal approach), A4 = a/a, (a, being the
contact half-width predicted by the Hertzian solution), and R is the radius of the cylinder.
Restrictions on the variation of the relative tangential displacement depend on the exact
contact configuration. Note that within a stick zone the relative tangential strain ¢, (i.c
grdenter _ g0y between adhered points is equal to the value when they first entered the sm.k
zone whilst in the slip zones the direct and shear tractions are related by the coefficient of
friction, /. i.c.
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Fig. 3. Frictionless indentation : direct tractions (symmetric).

q= |/ (7

FRICTIONLESS INDENTATION

The simplest problem which may be treated is normal indentation by a frictionless
cylinder (Fig. [(b)). At low loads, i.c. a <« b, the contact is Hertzian, since the strip approxi-
mates a half-planc. At finite loads, the numerical solution must be used. Equations (4) and
(6) arc cquated for all values of =8 < m < S, Thus the vertical displacement is matched
al 285+ 1 points, including the edges of contuact. A further equation arises from the require-
ment of vertical equilibrium, Le.

s -1
S P =pji=2s. (8)
ts - 1)

e -

The unknowns are the 25— 1 ordinates of the contact pressures P, together with the
rigid body normal approach d, 4 (a measure of the contact patch size) and the eccentricity
¢. Thus the problem has been reduced to 25 + 2 simultancous equations in 25 + 2 unknowns
and may readily be solved using a computer library routine. As expected from symmetry ¢
is found to be zero. The distribution of normal traction is shown in Fig. 3 for several valucs
of b/a. P is normalized with respect to p,,., the maximum Hertzian contact pressure and the
results were calculated with S = 20. The major effect of the finite strip thickness can be seen
to be a reduction in contact area, compared to the Hertzian solution and a corresponding
increase in peak pressure. The limiting case for large b/a is Hertzian contact of a cylinder
on a half-planc. The opposite limit (b/a — 0) corresponds to Hertzian contact of two
cylinders of radius R (a/a,, = 1/(2, poadlp .« = \/2). This is as expected since for thin strips
the displacements within the strip are small compared with those in the cylinders.

SLIDING CONTACT

Consider now quasi-static sliding contact between the impressed cylinder and the strip.
Numerical solution is again achieved by combining eqns (4) and (5) and using eqn (7). In
this case there is no longer symmetry, and ¢ is non-zero. Again there are 25+ 2 knowns
and unknowns (if only the (25— 1)P, are treated as unknown tractions) and the shear
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Fig. 4. Sliding contact, f = 0.3, v = 0.3 : surface tractions.

components are related by eqn (7) (i.e. ¢ = fp). Figure 4 shows distributions of normal and
shear tractions at several different values of b/a for /= 0.3 and v = 0.3. These results were
obtained with S = 10.

Again the major effect of the finite strip thickness can be seen to be a reduction in the
contact area and an increase in the peak pressure. The coupling between shear and direct
tractions produces some asymmetry in the results but the effect is not large at this value of f.

ADHESIVE INDENTATION

As a prelude to analysing the fretting problem, normal indeatation where the inter-
facial friction is finite but Q = 0 will be treated. This configuration is considerably more
complex than the previous ones, and a satisfactory initial simplification of the problem is
to assume that the cocfficient of friction is sufliciently high to prevent relative displacement
between corresponding points on the two bodies once within the contact zone, i.c. that no
slip takes place. As the applied load is increased, the contact patch grows and new surface
particles come into contact. The relative strain between such points remains constant once
they enter the contact and, since there is no rigid body tangential displacement, the relative
displacement u, also remains constant. We therefore need to ensure that, for all pairs of
adhered points, u, remains at the same value as when the two points entered the contact.

One difliculty is that the displacements of such points before they enter the contact
zone are not known a priori. Further, since the displacement of points within the strip is
an unknown function of the ratio b/a, the problem is not self-similar, unlike those treated
by Spence(6, 7). and hence an incremental solution, as first used by Goodman in his analysis
of contact between dissimilar spheres[8], is necessitated.

The solution proceeds as follows : at large values of b/a the geometry approximaltes to
the Hertzian case of two half-planes and we thus expect the values of u, to be small within
the contact. It is therefore reasonable to assume an approximately lincar variation of u,
with x for some large value of b/a (= b/a,. say). We are then able to specify the rclative
tangential displacements at the matching points (u,,) in terms of the values at the edges of
the contact u(a,), u(—a,), which are as yet unknown. We thus obtain the 25 + | tangential
matching equations by substituting for u,, in eqn (5). There are now 45+ 3 equations, and
the corresponding unknowns are: 25— values of P,, 25— 1 values of Q,, E, A, D, u(a,),
and u(—a,).

The solution reveals the values of u at x/b = +a,/b. We now take a small load
increment such that the contact grows to x = +a,. Linear interpolation of the previous
solution is used to determine u,, for all matching points within the range |x| < a, and the
variation over the small intervals a, < [x| < a4, is assumed linear. The solution of the second



110 D. NoweLL and D. A. Hiis

g
p p
@ 4
1.5 4
b/a
0.1
0.5
0 1. N
5.0 [
0.5
a
/%
(a) 0.0 T T Y b
0.0
0.5 10 x/3,
q. ¢ ?
Po % | a
. 1o o
Qeé 140 7 B I e Q)
X
0.3 0.3
0.2 087 / “
) )
{ N
0.1 0.7 i B
b P,
(b) ' -1 S ey R
u 1.0 2.0 0 bro
Wi
1
b
8.0 ]
4.0
2.0
4
¢ 0.0 T T T T T T T T T g
() 0.0 2.0 .0 6.0 #.0 x/b

Fig. 5. Adhesive indentation, v = 0.3 (a) direct tractions (symunetric), and shear tractions (anti-
synumetric) : (b) vanation of contact size and maximum shear traction with b ¢ (¢) variation ol
relative tangential displacement with v within the contact.

step can now be found since the values of u,, at all matching points arc cither known tfrom
the previous solution or can be expressed in terms of w(+«,). Hence, the incremental
solution proceeds by taking small steps in b/a from an initial value which is sufficiently
large for the variation of «, to be assumed lincar. Once four values of u(q,) are known a
fitted cubic spline is used in place of lincar interpolation to determine u,,

Results were calculated with S = 10 and for v = 0.3, Figure 5(a) shows the normal
and shear stress distributions for various values of b/a. Figure 5(b) shows the variation of
aja, and the maximum shear traction with A,a. [t will again be noted that as b/a — 0. and
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Fig. 6. Frictional indentation, v = 0.3, / = 0.2: (a) dircet tractions (symmetric), and shear tractions
tantisymmetric); (b) variation of contact size and maximum shear traction with b/a, which, for
adhesive indentation, is the entire contact,

bla = o the contuct becomes Hertzian. Between these limits, the finite strip causes sig-
nificant shear tractions at the interface which reach a maximum at d/a = 0.35. Figure 5(c)
shows the variation of 1 with x within the stick zone.

FRICTIONAL INDENTATION

The restriction that the coetlicient of friction is sufficiently high to sustain stick through-
out the contact is now relaxed. It has been shown by Goodman[8], for the case of point
contact between dissimilar bodies, that although the shear traction falls continuously to
zero at the edge of contact, the ratio ¢/p becomes infinite there, Bentall and Johnson,
however, show that for rolling contact between a strip and a cylinder this ratio falls to zero
at the edges of contuct. Because of the discrete nature of our numerical analysis we are only
able to examine this ratio at the 25— 1 points a. If full stick is assumed, the highest value of
g/p predicted by our numerical solution with S'sct to 10 is 0.328 at h/u = 0.343, |x}/a = 0.9.
Thus if /' < 0.328, the solution produced by assuming adhesion cverywhere is violated. If
f > 0.328 possible violations may occur at x/a > 0.9 but cannot be detected without
increasing S.

For values of f where violations occur an iterative scheme is adopted to overcome the
problem. At each load increment stick is first assumed. The outer points are then checked
for violations of the friction law and where these are detected Q, is replaced by +/ P, as
appropriate. The matching of the tangential displacement is discarded within the new slip
zonc ¢ < |x| < a (Fig. 1(c)). A new solution is now obtained, and again checks for violations
are carried out. If necessary, further points are permitted to slip until a satisfactory result
is obtained. Values of u(+c¢) are recorded for incorporation at the next load step, which
can now be taken. Figure 6 shows the results obtained for f = 0.2, v = 0.3 with § = 20.
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Fig. 7. Frictional indentation, v = 0.3, /' = 0.2, stick and slip zones.

The variation of the stick zone boundaries and the size of the contact patch is shown in
Fig. 7. It is seen that for b/a 2 2.0 the contact is effectively Hertzian. As the load is increased
the slip zones develop. reaching a maximum proportion of the contact at about b/a = 0.6.
As the load is increased further the slip zone rapidly recedes so that as /¢ — 0 normal
Hertzian conditions again apply.

MINDLIN PROBLEM

As stated at the outset, the object of the present work was to assess the influence of
finite strip thickness on fretting fatigue analysis. The classical analysis of this configuration,
with cach body approximated by a half-plane was carried out by Mindlin[9]. In his solution
two clastically similar bodics are pressed normally together so that they stick everywhere,
and then a tangential foree less than that needed to cause sliding is applicd, giving rise to
a central stick zone bordered by slip of the same sign.

In our configuration, slip zones of opposite sign alrecady exist before the tangential
force is applied. As soon as such a foree is applied the magnitude of the shear stress on one
side s augmented, whilst the other is reduced (Fig. 1(d)). This is accompanied by a small
refative displacement in the direction of the augmented shear. Note, however, that in the
slip zone where the shear traction is depleted, the shear traction and relative “slip velocity™
are of opposite sign. This violutes the friction law and hence instantancous adhesion resuits
{—~a < x < —¢, Fig. 1(d)). As the magnitude of @ is increased, we expect slip to re-start at
X = —a, but to be of the sume sign as that in the interval ¢ < x < a.

The starting conditions for the solution of this loading are the final conditions for
frictional indentation, but with an infinitesimal load increment 3@ applied so that the stick
zone extends over —a < x < ¢. The relative tungential displacement u is already known for
—¢ < x < ¢ and may be calculated for —a > x > —c using eqn (5). The application of a
shear force Q results in a relative displacement J, between distant points in the bodies, so
that the tangential matching condition expressing e, = constant becomes

Hy = Upo+ 6, (9

where u,,, are the values determined before @ is applied. The further unknown J, gives a
measure of the tangential compliance. The problem is rendered determinate by introducing
the sccond (tangential) equilibrium cquation

Y Q.= 0/ = 250/P. (10)

nw s~ 1)

Again an iterative solution is pursued. The required value of Q/P is chosen and the
stick zone taken initially to be —a < x < ¢. If violations occur either or both outer points
are allowed to slip and the problem re-solved. The method proceeds until a satisfactory
solution is obtained. It should be noted that an incremental approach is not required since
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Fig. 8. Mindlin type contact, v = 0.3, f = 0.2, shear traction distributions.

the stick zone recedes and u,,, is known everywhere. Shear traction distributions for a range
of values of Q/fP are given in Fig. 8 for b/a = 1.0, f = 0.2, and v = 0.3. For these values
of b/a and f coupling between shear and direct tractions is so small that the direct tractions
are almost identical to the case when @ = 0. Similarly the variation of a/a, with Q is
sufficiently small to be neglected. Figure 9 summarizes the variation of stick zone boundaries
with @/ fP for bla = 1.0, f = 0.2, and v = 0.3.

CONCLUSION

A range of frictionless and frictional contact problems of an clastic strip indented by
two rollers has been studied. For each, the interfacial tractions have been deduced using
the method of Bentall and Johnson. It has been shown that the largest discrepancics from
Hertzian theory oceur at bla = 0.4 and that if h/a > 5.0, differences are negligible. The
results confirm that the contact pressure is still approximately parabolic (Figs 3, 5(a). and
6(a)) but that the contact size and peak pressure are considerably altered. Figure 10 may
be used to caleulate both these quantitics for any known load since the equivalent Hertzian
contact size a,, is easily found. These results are presented for the case of adhesive inden-
tation, but are almost ideatical for the other configurations studied.

The effect of finite strip thickness on the form of the contact pressure distribution for
a sliding contact is slight (Fig. 4) and is very much less than the influence of a dissimilarity
between elastic constants{10]. Indeed, a general result of all our investigations is that the
effect of coupling between the shear and direct tractions is small. Said ditferently, it may
be stated that for practically realizable cocflicients of friction, the magnitude of surfuce
vertical displacements induced by shear is much less than the initial curvature. Therefore
it would be entirely reasonable, for all strip thicknesses, to solve directly for the pressure,
neglecting the effect of ¢(x). This would considerably facilitate the solution.

0.0 f T T T T T T T T
- 1e0 -G8 ~0.8 <0 <0e2 o 0.2 Gud 0.6 0.8 1.0 X/Q0

Fig. 9. Mindlin type contact, v = 0.3, f = 0.2, stick and slip zones.
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Fig. [0. Variation of contuct size and peak pressure with normalized strip width, adhesive inden-
tation. v = 0.3,

Adhesive and trictional indentation problems require an incremental solution, which
is rather expensive in computing tume but gives satisfactory results with S = 10 or greater.
The effect of finite friction on the results is not significant at realistic values of £, as noted
by Bentall and Johnson[4]. The effect on the direct traction is very small, being confined to
a slight attenuation near the edges of contact and a corresponding increase at x/a = 0.5.
There is. however, a more pronounced shift in the shear traction distribution towards the
centre of contact (¢f. Figs S(a) and 6(a)).

Lastly, the cffect of tinite strip thickness on stick/slip zones for Mindlin contact has
been found (Figs 8 and 9). It may be seen from Fig. 9 that one stick zone grows considerably
at the expense of the other, affecting the amplitude of microslip, which is of considerable
interest in the analysis of fretting tatigue. Stress ficlds have not been calculated here, but
might be most conveniently done by utilizing expressions for the stresses induced by a
triangular distribution of traction[3] and using superposition. Previous calculations ot the
stresses induced by a Mindlin contact modified by the presence of a bulk tension[2] indicate
that the shifted stick zone is unlikely to have a large effect on the stresses in the strip, even
at those strip thicknesses where there is substantial asymmetry. A similar problem of a
linite strip indented by a rigid indenter has been studied by Keer and Farris[LH].
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