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Abstract-In this paper. plane elastic contact between a thin strip and symmetric rollers is
considered. Various loading regimes. including frictional sliding. frictionless and frictional inden
tation. and the effect of applying a tangential force less than that necessary to cause sliding are
treated. For each case. the surface tractions are found. and. for the last two problems. a detailed
analysis of the stick and slip zones is presented.

INTRODUCTION

The motivation for the present analysis was a desire to assess the degree of approximation
implicit in representing the strip used in fretting fatigue tests as a half-plane. A schematic
view of the geometry is shown in Fig. I(a). Previous analyses had treated the contact as
Hcrtzian. i.e. it had been assumed that the thickness of the strip was much greater than the
conlact semi-width, so that each body could be approximated by a half-plane[I.2J. It
transpires that for practical cases. where this ratio is typically 10, the idealization is entirely
justified, but a wide variety of other cases with the same general layout, and where the
assumption of Hertzian contact is certainly imtppropriate, have also been examined.

Elastic contact problems involving strips can, in principle, be formulated using Sned
don's integral transform methods[3]. However, in practice two problems arise; first, the
integrals developed are often difficult to evaluate accurately, since they are over a scmi
infinite range and incorporate slowly decaying oscillatory kernels. Secondly, mixed boun
dary value problems cannot readily be formulated. Instead, a hybrid method due to Rental!
and Johnson[4] is adopted.

Whereas in half-plane problems an integral equation relating the surface displacements
to a continuously varying traction distribution can easily be composed[5], for strip problems
this is not feasible, owing to the complexity of the influence function. Instead. a piecewise
linear idealization of the true traction is utilized, which consists of a series of overlapping
triangles (Fig. 2). The first step in the solution is to determine the surface displacements at
some point m due to a triangle of traction (direct or shear) centred on a point 11. When this
building block has been established, a wide variety of contact geometries may be analysed
by formulating what is. essentially, a discretized form of the integral equation method.
Details of the derivation of these influence functions are given by Bentall and Johnson(4)
and here, after summarizing the results needed, we concentrate on the solution of the
boundary value problems.

INFLUENCE FUNCTIONS

The problem outlined above where two cylinders indent a strip as shown in Fig. I(a)
has the folIowing surface boundary conditions outside the contact:

Ixl > a, y = ±b ( I )

where a is the contact semi-width and b the strip semi-thickness. We may use arguments of
symmetry about y = 0 to augment eqn (I), giving the following:
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Ixl > u. .I' = h

.1'=0

(2)

whereupon the problem is seen to be identical to that of an clastic strip of thickness h resting
on"1 rigid frictionless substrate as shown in Fig. I(b).

In general. coupling between shear and direct tractions may led to an asymmetrit:
distribution of direct traction. This would result in the centre of contact not being coinci
dent with the centre of the indenter. Accordingly we take the origin as the centre of the
contact and assume the centre of the indenter to be displaced by an amount e. To reduce
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Fig. 2. Discrctized modd of surface tractions.
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the number of independcnt variables we considcr here contact between a cylindcr and an
elastic strip having the same clastic constants, namely Poisson's ratio v and modulus of
rigidity Jt. The problem is formulated below for conditions of plane strain.

Dircct and shcar tractions ovcr the contact are each representcd by 2S overlapping
triangles with cqual bases (Fig. 2). The heights of the nth triangles arc f'" and if", which
n:pn:sent the magnitudes of the direct and shear tractions, respectively, at x = nlllS. Wc
now write down the relative vertil.:al and horizontal displacements c(m), lI(m) due to the
total direct and shear force exertcd[41

, ·1

L
r(m)

II
= Pn[~ {lw + I.,(m -n)} + ,.,1(,I/.J/(m-l1) -[.'R(n)} + ,I

S
[4R(m-Il)]

(\' jJ - _ ... l -

n.'~1 l)Qn[~/H(m-II)- 8~ .\-:.~~ I HR (Il)] (4)

u(m)

a =

(5)

where Pn =!'"Ift, Qn = if,,/P, P = P/2S, B = bla and functions I arc precisely as defined by
Ikntall and Johnson, q.v., and tabul;'ltcd for convenience in the Appendix.

Following Hertz, the relative vertical displacement within the contact zone is approxi
mated by a parabola. An allowance is made for the eccentricity t!, so that

(6)

where £ = "la, D = diu (d being the rigid body normal approach), A = ala,.. (a J; being the
contact half-width pfl'dicted by the Hertzian solution), and R is the radius of the cylinder.
Restrictions on the variation of the relative tangential displacement depend on the exact
contact configuration. Note that within a stick zone the relative tangential strain "r (i.e.
,,~":klll<r -,,:';'1') between adhered points is equal to the value when they first entered the stick
zone whilst in the slip zones the direct and shear tractions are related by the coefficient of
friction,;: i.e.
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FRICTIONLESS INDENTATION

The simplest problem which may be treated is normal indentation by a frictionless
cylinder (Fig. I(b». At low loads, i.e. a« h, the contact is Hertzian. since the strip approxi
mates a half-plane. At finite loads. the numerical solution must be used. Equations (4) and
(6) arc equated for all values of -S:::; m:::; S. Thus the vertical displacement is matched
at 2S+ I points, including the edges of contact. A further equation arises from the require
ment of vertical equilibrium. i.e.

• I

2: Pn == Pip == 25'.
ft "" 1.1 I)

(8)

The unknowns arc the 25 - I ordinates of the contact pressures Pn• together with the
rigid body normal approach d. A (a measure of the contact patch size) and the eccentricity
e. Thus the problem has been reduced to 25 + 2 simultaneous equations in 25 + 2 unknowns
and may readily be solved using a computer library routine. As e:<pected from symmetry e
is found to be zero. The distribution of normal traction is shown in Fig. 3 for several values
of hla. P is normalized with respect to p". the maximum Hertzian contact pressure and the
results were calculated with 5 == 20. The major elrect of the finite strip thickness can be seen
to be a reduction in contact area, compared to the Hertzian solution and a corresponding
increase in peak pressure. The limiting case for large hla is Hertzian contact of a cylinder
on a half-plane. The opposite limit (hla --+ 0) corresponds to Hertzian contact of two
cylinders of radius R (aia-r = 1/,./2. Pm••lp r == J2). This is as expected since for thin strips
the displacements within the strip arc small compared with those in the cylinders.

SLIDING CONTACT

Consider now quasi-static sliding contact between the impressed cylinder and the strip.
Numerical solution is again achieved by combining eqns (4) and (5) and using eqn (7). In
this case there is no longer symmetry. and e is non-zero. Again there are 2S+2 knowns
and unknowns (if only the (2S - I) Pn are treated as unknown tractions) and the shear
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Fig. 4. Sliding contact. / = 0.3. v =0.3 : surface tractions.

components are related by eqn (7) (i.e. q = fp). Figure 4 shows distributions of normal and
shear tractions at several different values of b/a for f = 0.3 and v = 0.3. These results were
obt<1ined with S = 10.

Ag<1in the m<1jor effect of the finite strip thickness can be seen to be a reduction in the
cont<1ct <1re<1 <1nd <1n incre<1se in the peak pressure. The coupling between shear and direct
tr<1ctions produces some <1symmetry in the results but the effl:ct is not large <1t this value of I

ADHESIVE INDENTATION

As ~I prelude to analysing the fretting problem, normal indentation where the inter
faci<1( friction is finite but Q = 0 will be tre<1ted. This configuration is considerably more
complex than the previous ones, and a satisf<lctory initi<ll simplification of the problem is
to assume th<lt the coefficient of friction is sufliciently high to prevent relative displacement
between corresponding points on the two bodies once within the contact zonc, i.e. that no
slip takes place. As the <lpplied load is incre<lsed, the contact patch grows and new surf~lce

particles come into cont<lct. The rel<ltive stmin between such points remains constant once
they enter the cont<lct and, since there is no rigid body tangential displacement, the relative
displacement u, also rem<lins constant. We therefore need to ensure that, for <III pairs of
adhered points, u, rem<lins at the same value <IS when the two points entered the contact.

One diflieulty is th<lt the displacements of such points before they enter the cont<lct
zone are not known a priori. Further, since the displacement of points within the strip is
an unknown function of the ratio bfa, the problem is not self-similar, unlike those treated
by Spence[6, 7], and hence an incremental solution, as first used by Goodman in his analysis
of contact between dissimilar spheres[8], is necessitated.

The solution proceeds as follows: at large values of b/a the geometry approximates to
the Hertzian case of two h<llf-pl<lnes and we thus expect the values of u, to be small within
the contact. It is therefore re<lsonable to assume an approximately linear vari<ltion of u,
with x for some I<lrge value of b/a (= b/ao, say). We are then able to specify the rel<ltive
tangential displacements at the matching points (u",) in terms of the values <It the edges of
the contact u(ao), u( -ao), which are as yet unknown. We thus obtain the 2S+ I tangential
matching equations by substituting for u'" in eqn (5). There are now 48+3 equations, and
the corresponding unknowns are: 28- I values of p., 2S- I values of Q., E, A, D, lI(ao),
and u( -ao).

The solution reveals the values of II at x/b = ±ao/b. We now take a small load
increment such that the contact grows to x = ±al. Linear interpolation of the previous
solution is used to determine II", for all matching points within the range Ixl ~ a oand the
variation over the small intervals ao~ Ixl < 01 is assumed linear. The solution of the second
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step can now be found since the values of II", at all matching points arc either known from
the previous solution or can be expressed in terms of lIe ±1I I)' Hence. the incremental
solution proceeds by taking small steps in hili from an initial value which is sutliciently
large for the variation of II, to be assumed linear. Once four values of 1I(1I,) arc known a
fitted cubic spline is used in place of linear interpolation to determine II",.

Results werc calculated with S = 10 and for \' = 0.3. Figure 5(a) shows the normal
and shear stress distributions for various valucs of hill. Figure 5(b) shows the variation of
a/a, and the maximum shear traction with h:lI. It will again be notcd that as hill -> O. and
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bfa -0"1) the contact becomes Hertzian. Between these limits. the linite strip causes sig
nilicant shear tractions at the interface which reach a maximum at bla ::::: 0.35. Figure 5(c)
shows the variation of II with x within the stick zone.

FRICTIONAL INDENTATION

The restriction that the coelficient of friction is sutlkiently high to sustain stick through
out the contact is now reluxed. It has been shown by Goooman[8]. for the cuse of point
contact between dissimilar bodies. that although the shear traction falls continuously to
zero at the edge of contact. the ratio 'lIp becomes infinite there. Bentall and Johnson,
however. show that for rolling contuct between u strip and a cylinder this ratio falls to zero
.tt the edges of contact. Because of the discrete nature of our numerical analysis we are only
able to examine this ratio at the 25 - I points n. If full stick is assumed. the highest v.tlue of
'lIp predicted by our numerical solution with 5 set to 10 is 0.328 at hla = 0.343. Ixl/a = 0.9.
Thus iff < 0.328. the solution produced by assuming adhesion everywhere is violated. If
I> 0.328 possible violations may occur at xla > 0.9 but cannot be detected without
increasing S.

For values off where violations occur an iterative scheme is adopted to overcome the
problem. At each load increment stick is first ussumed. The outer points arc then checked
for violations of the friction law and where these arc detected Qn is replaced by ±fPnas
appropriate. The matching of the tangential displacement is discarded within the new slip
zone c ~ Ixl ~ a (Fig. I(c». A new solution is now obtained. and again checks for violations
arc carried out. If necessary. further points arc permitted to slip until a satisfactory result
is obtained. Values of lIe ±c) are recorded for incorporation at the next load step. which
can now be taken. Figure 6 shows the results obtained for I = 0.2. v = 0.3 with 5 = 20.
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The variation of the stick zone boundaries and the size of the contact patch is shown in
Fig. 7. It is seen that for hla ~ 2.0 the contact is effectively Hertzian. As the load is increased
the slip zones develop. reaching a maximum proportion of the contact at about hill = 0.6.
As the load is increased further the slip zone rapidly recedes so that as hill ..... 0 normal
Hertzian conditions again apply.

MINDLIN PROBLEM

As stated at the outset. the object of the present work was to assess the inl1uence of
finite strip thickness on fretting 1~ltigue analysis. The classical analysis of this configuration,
with each body approximated by a half-plane was carried out by Mindlin[9]. In his solution
two elastically similar bodies arc pressed normally together so that they stick everywhere,
and then a tangential force less than that needed to cause sliding is applied, giving rise to
a central stick zone bordered by slip of the same sign.

In our conliguration, slip zones of opposite sign already exist before the tangential
force is applied. As soon as such a force is applied the magnitude of the shear stress on one
side is augmented, whilst the other is reduced (Fig. I(d». This is accompanied by a small
relative displacement in the direction of the augmented shear. Note, however. that in the
slip zone where the shear traction is depleted, the shear traction and relative "slip velocity':
arc of opposite sign. This violates the friction law and hence instantaneous adhesion results
( - II < X < - c, Fig. I(d». As the magnitude of Q is increased, we expect slip to re-start at
x = - a, but to be of the same sign .IS that in the interval c < x < a.

The starting conditions for the solution of this loading arc the final conditions for
frictional indentation, but with an infinitesimal load increment DQ applied so that the stick
zone extends over -a < x < c. The relative tangential displacement II is already known for

(" < x < c and may be calculated for -a> x> -c using eqn (5). The application of a
shear force Q results in a relative displacement 151 between distant points in the bodies, so
that the tangenti,1I matching condition expressing &, = constant becomes

(9)

where ll",o arc the values dctcrmined bcfore Q is applied. Thc further unknown (51 givcs a
measure of the tangential compliance. The problem is rendered determinate by introducing
the second (tangential) equilibrium equation

s ~< 1

L Qn = Q/p = 2SQ/P.
n"lt '-{,f I)

( 10)

Again an iterative solution is pursued. The required value of QI P is chosen and the
stick zone taken initially to be -a < x < c. If violations occur either or both outer points
are allowed to slip and the problem re-solved. The method proceeds until a satisfactory
solution is obtained. It should be noted that an incremental approach is not required since
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Fig. 8. Mindlin type contact. v = 0.3. f = 0.2. shear traction distributions.

the stick zone recedes and u",o is known everywhere. Shear traction distributions for a range
of values of QIfP are given in Fig. 8 for bla = 1.0. f = 0.2. and v = 0.3. For these values
of h/a and f coupling between shear and direct tractions is so small that the direct tractions
are almost identical to the case when Q = O. Similarly the variation of ala" with Q is
sut1kiently small to be neglected. Figure 9 summarizes the variation ofstick zone boundaries
with QIfP for hla = 1.0. f = 0.2. and v = 0.3.

CONCLUSION

A range of frictionless and frictional contact problems of an clastic strip indented by
two rollers hotS been studied. For each. the interfacial tractions have been deduced using
the method of Rentall and Johnson. It has been shown that the largest discrcpancies from
Hertzian theory occur at hili ~ 0.4 and that if b/a > 5.0. differences "re negligible. The
results conlirm that the contact pressure is still approximately parubolic (Figs 3. 5(a). ami
6(;1)) hut that Ihe contact size and peak pressure are considerubly altered. Figure 10 may
he used to calculate both these quantities lor any known load since the equivalent I-krtzian
wntact size tI" is easily found. These results are presented for the case of adhesive inden
tation. but are almost identical for the other configurations studied.

The elli.:ct of finite strip thickness on the form of the contact pressure distribution for
a sliding contact is slight (Fig. 4) and is very much less than the inl1uence of a dissimilarity
between elastic constants[IOj. Indeed. a general result of all our investigations is that the
ellcct of coupling between the shear and direct tractions is small. Said differently. it may
be stated that for practically realizable coefficients of friction. the magnitude of surface
vertical displacements induced by shear is much less th"n the initial curvature. Therefore
it would be entirely reasonable. for all strip thicknesses. to solve directly for the pressure.
negh:cting the effect ofq(x). This would considerably facilitate the solution.
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Adhesive and frictional imkntation problems require an incremental solution. which
is rather expensive in computing time but gives satisfactory results with S = 10 or greater.
The ctIect of finite friction on the results is not significant at realistic values of j: as noted
by Bentall and Johnson(4]. The etli.:ct on the direct traction is very small, being conllned to
a slight allenuation ncar the edges of contact and a corresponding increase at x/a ~ 0.5.
There is. however. a nwn: prnnotll1\xd shift in the she.lr traction distribution towards the
centre ofconlal:t (cr. Figs 5(a) and (,(a)).

Lastly, the dkct of linill: strip thickness on stick\lip zones for Mindlin contact has
heen found (Figs Sand 9), It may hI.: sl.:l.:n from rig. 9 that one stick zone grows considerahl)
at the expensl.: of the other. al1i:ding the amplitude of mil.:roslip, which is of considerable
interest in the analysis of fretting fatigue. Stress fields have not been calculated here, but
might be most conveniently donI.: by utilizing expressions for the stresses induced by a
triangular distribution of traction[Jj and using superposition. Previous calculations of thc
stresses induced by a Mindlin contactl1lodilied hy the presence ofa bulk tension[2] indicate
that the shifted stick lOne is unlikely to han: a large clrect on the stresses in the strip, even
at those strip thicknesses where there is substantial asymmetry. A similar problem of a
linite strip indented hy a rigid indenter has heen studied by Keer and Farris[ f I] .
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-4J'" [ I-cosh fJ] .' ., dfJ
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